Hydrological modelling using artificial neural networks

نویسندگان

  • C. W. Dawson
  • R. L. Wilby
چکیده

This review considers the application of artificial neural networks (ANNs) to rainfall–runoff modelling and flood forecasting. This is an emerging field of research, characterized by a wide variety of techniques, a diversity of geographical contexts, a general absence of intermodel comparisons, and inconsistent reporting of model skill. This article begins by outlining the basic principles of ANN modelling, common network architectures and training algorithms. The discussion then addresses related themes of the division and preprocessing of data for model calibration/validation; data standardization techniques; and methods of evaluating ANN model performance. A literature survey underlines the need for clear guidance in current modelling practice, as well as the comparison of ANN methods with more conventional statistical models. Accordingly, a template is proposed in order to assist the construction of future ANN rainfall–runoff models. Finally, it is suggested that research might focus on the extraction of hydrological ‘rules’ from ANN weights, and on the development of standard performance measures that penalize unnecessary model complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Evaluation of the Effective Electrospinning Parameters Controlling Kefiran Nanofibers Diameter Using Modelling Artificial Neural Networks

Objective(s): This paper investigates the validity of Artificial Neural Networks (ANN) model in the prediction of electrospun kefiran nanofibers diameter using 4 effective parameters involved in electrospinning process. Polymer concentration, applied voltage, flow rate and nozzle to collector distance were used as variable parameters to design various sets of electrospinning ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001